MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Call for applications for STFC Public Engagement Early-Career Researcher Forum

 

The STFC Public Engagement Early-Career Researcher Forum (the ‘PEER Forum’) will support talented scientists and engineers in the early stages of their career to develop their public engagement and outreach goals, to ensure the next generation of STFC scientists and engineers continue to deliver the highest quality of purposeful, audience-driven public engagement.

Applications are being taken until 4pm on 3 June 2021. If you would like to apply, visit the PEER Forum website, and if you have queries This email address is being protected from spambots. You need JavaScript enabled to view it..

The PEER Forum aims:

  • To foster peer learning and support between early career scientists and engineers with similar passion for public engagement and outreach, thus developing a peer support network that goes beyond an individual’s term in the forum 
  • To foster a better knowledge and understanding of the support mechanisms available from STFC and other organisations, including funding mechanisms, evaluation, and reporting. As well as how to successfully access and utilise this support 
  • To explore the realities of delivering and leading public engagement as an early career professional and build an evidence base to inform and influence STFC and by extension UKRI’s approaches to public engagement, giving an effective voice to early career researchers

What will participation in the Forum involve?

Participants in the PEER Forum will meet face-to-face at least twice per year to share learning and to participate in session that will strengthen the depth and breadth of their understanding of public engagement and outreach.

Who can apply to join the Forum?

The PEER Forum is for practising early-career scientists and engineers who have passion and ambition for carrying out excellent public engagement alongside, and complementary to, their career in science or engineering. We are seeking Forum members from across the breadth of STFC’s pure and applied science and technology remit.

The specific personal requirements of PEER Forum membership are that members:

  • Have completed (or currently studying for – including apprentices and PhD students) their highest level of academic qualification within the last ten years (not including any career breaks)
  • Are employed at a Higher Education Institute, or a research-intensive Public Sector Research Organisation or Research Laboratory (including STFC’s own national laboratories)
  • Work within a science and technology field in STFC’s remit, or with a strong inter-disciplinary connection to STFC’s remit, or use an STFC facility to enable their own research
  • Clearly describe their track record of experience in their field, corresponding to the length of their career to date
  • Clearly describe their track record of delivering and leading, or seeking the opportunity to lead, public engagement and/or outreach
  • Can provide insight into their experiences in public engagement and/or outreach and also evidence one or more of
  • Inspiring others
  • Delivering impact
  • Demonstrating creativity
  • Introducing transformative ideas and/or inventions
  • Building and sustaining collaborations/networks
  • Are keen communicators with a willingness to contribute to the success of a UK-wide network
  • https://stfc.ukri.org/public-engagement/training-and-support/peer-forum/  

    Astronet Science Vision & Infrastructure Roadmap

     

    Astronet is a consortium of European funding agencies, established for the purpose of providing advice on long-term planning and development of European Astronomy. Setup in 2005, its members include most of the major European astronomy nations, with associated links to the European Space Agency, the European Southern Observatory, SKA, and the European Astronomical Society, among others. The purpose of the Science Vision and Infrastructure Roadmap is to deliver a coordinated vision covering the entire breadth of astronomical research, from the origin and early development of the Universe to our own solar system.

    The first European Science Vision and Infrastructure Roadmap for Astronomy was created by Astronet, using EU funds, in 2008/09, and updated in 2014/15. Astronet is now developing a new Science Vision & Infrastructure Roadmap, in a single document with an outlook for the next 20 years. A delivery date to European funding agencies of mid-2021 is anticipated. 

    The Science Vision and Infrastructure Roadmap revolves around the research themes listed below:

    • Origin and evolution of the Universe
    • Formation and evolution of galaxies
    • Formation & evolution of stars
    • Formation & evolution of planetary systems
    • Understanding the solar system and conditions for life

    but will include cross-cutting aspects such as computing and training and sustainability.

     

    After some delays due to the global pandemic, the first drafts of the chapters for the document are now available from the Panels asked to draft them, for you to view and comment on. For the Science Vision & Roadmap to be truly representative it is essential we take account of the views of as much of the European astronomy and space science community as possible – so your input is really valued by the Panels and Astronet. Please leave any comments, feedback or questions on the site by 1 May 2021.

    It is intended that a virtual “town hall” style event will be held in late Spring 2021, where an update on the project and responses to the feedback will be provided.

    Equitable Letters in Space Physics (ELSP)

    Equitable Letters for Space Physics (ELSP) is a project to encourage merit-based recommendations and nominations in the space physics community by providing resources for letter writing and reviews of recommendation and nomination letters. You can learn more about ELSP's mission and find both letter writing and implicit bias resources at the ELSP website.

    ELSP seeks to achieve this goal by:

    1. Providing resources for people writing letters of recommendation and award nomination at the undergraduate level and above.
    2. Providing resources for people wishing to learn about different implicit biases and lessen their manifestation.
    3. Providing reviews of recommendation and nomination letters, with the goal of lessening implicit bias in these letters.

    At the moment, ELSP is seeking volunteers to participate as reviewers in the letter submission system. This system will function similarly to double-blind journal article reviews, with the ELSP executive director acting as editor.The ELSP board of directors is Angeline G. Burrell; John Coxon; Alexa Halford; McArthur Jones Jr.; and Kate Zawdie. If you have more questions or would like to participate, This email address is being protected from spambots. You need JavaScript enabled to view it..

    Call for proposals for ESA's Living Planet Fellowship

    ESA is currently inviting proposals for their Living Planet Fellowship with a deadline of 15 March 2021. These fellowships, worth a maximum of €110k, are intended:

    To support young scientists, at post-doctoral level, to undertake cutting-edge research in Earth Observation, Earth System Science or Climate Research, maximising the scientific return of ESA and European EO missions and datasets through the development of novel EO methods, techniques and products, and by delivering excellent scientific results addressing the grand Earth Science challenges of the next decade, enabling improved predictions of the physical interaction of society with the Earth system.

    Interested candidates need to propose a two-year-long research plan which contributes to either of the two themes of the fellowship: "Advancing novel methods and techniques" or "Advancing Earth system science". The call also includes opportunities in the use of cloud computing capabilities; to support small ground-based experiments and in situ data collection; and a visiting scientist scheme to join the new ESA Earth System Science Hub.

    Questions related to the call can be submitted via email, and must be "not later than two weeks before the Closing Date" (i.e. by the end of February 2021). The timeline for the fellowships is as follows:

    Milestone Date
    Submission of proposals 15 March 2021 
    Communication of results* Q2 2021
    Beginning of activities* Q3 2021

    *tentative

    "Mental Health and Wellbeing in the MIST Community": A series of panel discussions

    We are hosting a series of pre-recorded panel discussions on the topic of "Mental Health and Wellbeing in the MIST Community", exploring the sources and impacts within our community as well as discussing ways to move forwards. The discussions will focus on both individual and community-wide perspectives, and will consider perspectives from a range of career stages. The panel discussions will separately focus on views from a) PhD students, b) PDRAs, and c) Tenure positions. 
     
    To ensure that the discussion focuses on the needs and issues most important to the MIST Community, we request your input on questions that you would like to pose to the panel, as well as specific topics that you would like to see covered. To suggest questions & topics, please use the following form: https://forms.gle/J4QS5JdaVCo1hF6z7 and submit your suggestions by Friday 26 February. Please note that any responses on the form are completely anonymous.
     
    For support with mental health and wellbeing concerns, we recommend the following resources: https://ras.ac.uk/education-and-careers/places-you-can-find-support.
     
    If you have any other questions, concerns, or would like to discuss anything in further detail, please get in touch at This email address is being protected from spambots. You need JavaScript enabled to view it..

    Nuggets of MIST science, summarising recent MIST papers in a bitesize format.

    If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!

    Network community structure of substorms using SuperMAG magnetometers

    By Lauren Orr (University of Warwick)

    Geomagnetic substorms are a global magnetospheric reconfiguration, during which energy is abruptly transported to the ionosphere. Central to this are the auroral electrojets, large-scale ionospheric currents that are part of a larger three-dimensional system, the substorm current wedge. Many, often conflicting, magnetospheric reconfiguration scenarios have been proposed to describe the substorm current wedge evolution and structure. We have used well-established network science techniques to analyze data from >100 ground-based magnetometers operated by the SuperMAG collaboration1.  We translated this data into a time-varying directed network, based on canonical cross-correlation of the vector magnetic field perturbations measured at each magnetometer pair2,3 and performed community detection on the network4. Communities are locally dense but globally sparse groups of connections in the network, identifying emerging coherent patterns in the current system as the substorm evolves. Analysis of 41 substorms exhibit robust structural change from many small, uncorrelated current systems before substorm onset, to a large spatially-extended coherent system, between 10-20 minutes after onset. We interpret this as strong indication that the auroral electrojet system during substorm expansions is inherently a large-scale phenomenon and is not solely due to many meso-scale wedgelets.

    Panels showing the evolution of the community structure during substorms. The top panels show temporal variations in the communities and connections. Panels on the bottom show snapshots at times of interest.

    Figure 1: The community structure of a substorm on the 16/03/1997. The abscissa of all panels is normalized time, where t'=0 is onset (dashed green line) and t'=30 (dashed purple line) is the time of maximum auroral bulge expansion. Panels 1-2 plots individual communities as circles where the size of the circle reflects the  number of connections within the community. The ordinate plots the mean MLT/MLAT of the community, and the color indicates the proportion of connections with each time lag, |τc|. The dashed lines overplotted are the edges of the auroral bulge (MLT) and the onset location (MLAT), found from auroral images. Panel 3 shows snapshots of the community structure at time points t’=0 (onset), t’=10 and t’=20, overplotted on maps provided by SuperMAG1. There is a clear shift from many, small uncorrelated communities before onset to one large correlated system half way through the expansion phase.

    Please see the paper for full details:

    Orr, L., Chapman, S.C., Gjerloev, J.W. et al. Network community structure of substorms using SuperMAG magnetometers. Nat Commun 12, 1842 (2021). https://doi.org/10.1038/s41467-021-22112-4

    The Cushion Region and Dayside Magnetodisc Structure at Saturn

    By Ned Staniland (Imperial College London)

    The moons Enceladus and Io are internal plasma sources for the magnetospheres of Saturn and Jupiter, respectively. This, coupled with their rapid rotation rates (~10 h), radially stretches the magnetic field from a dipole to a magnetodisc. However, this structure can break down at large distances where the magnetic field can no longer contain the equatorial plasma. This quasi-dipolar layer between the current sheet outer edge and magnetopause is known as the “cushion region.” This has previously been observed at Jupiter, predominantly at dawn, but not at Saturn (Went et al., 2011). It is suggested to be populated by mass-depleted flux tubes following magnetotail reconnection.

    We present the first evidence of a cushion region forming at Saturn. From the complete Cassini orbital dataset, only five examples are identified, showing this phenomenon to be rare, with four at local time dusk and one pre‐noon. The dusk cushion observed could be due to asymmetric heating of plasma in the Saturn system (Kaminker et al., 2017), as well as the changing magnetic field configuration through dusk where the field is less confined by the magnetopause, resulting in disc instabilities (Kivelson and Southwood, 2005).

    These results highlight a key difference between the rotationally driven magnetospheres of Saturn and Jupiter. The rare cushion region examples found and evidence of patchy reconnection at Saturn (Delamere et al., 2015) compared to the persistent cushion region at Jupiter (Went et al., 2011) and statistical x-line across the Jovian tail (Vogt et al., 2010) shows that the mass transport and loss mechanisms differ between these systems. Whilst the Saturn system is often described as being between Jupiter and the Earth in terms of dynamics and structure, these results suggest that this is perhaps an oversimplified description.

    An example of a cushion region is shown on the left, where the magnetic field observations indicate a transition from magnetodisc-like to quasi-dipolar. A schematic is included on the right where regions are colour-coded to indicate the expected locations of disc-like and dipolar-like fields.

    Figure: The left plot shows an example of a cushion region at Saturn. The top panel shows magnetic field data. The second panel showing the relative contributions of the radial (green) and meridional (blue) components to the total field. The third panel shows the angle between the observed field and a dipole. For this example, the field is disc-like in the middle magnetosphere, but the structure breaks down in the outer magnetosphere (highlighted by the background colours). The right plot shows the average dayside magnetic field configuration. The field is more disc-like in the dawn sector whilst there is a quasi-dipolar region in the outer magnetosphere at dusk.

    Please see the full paper for details:

    Staniland, N. R., Dougherty, M. K., Masters, A., & Achilleos, N. (2021). The cushion region and dayside magnetodisc structure at Saturn. Geophysical Research Letters, 48, e2020GL091796. https://doi.org/10.1029/2020GL091796

    Particle-In-Cell Simulations of the Cassini Spacecraft's Interaction with Saturn's Ionosphere during the Grand Finale

    By Zeqi Zhang (Imperial College London)

    Cassini's Grand Finale at Saturn was the first time the giant planet’s atmosphere had been sampled in-situ. The ionosphere, and indeed the Saturn system as a whole, provided a uniquely different environment compared to the terrestrial planets and also Jupiter, with populations of charged dust grains influencing the plasma dynamics.  When passing through Saturn’s ionosphere, Cassini observed an ionosphere dominated by ice and dust particles which continually rain inward from Saturn’s vast ring system and soak up free electrons, thus producing a dusty complex plasma.  Understanding how incident plasma currents charge a spacecraft relative to its surrounding environment is important for interpreting the surrounding plasma conditions and on-board plasma measurements.  In this article, we describe three dimensional Particle-In-Cell simulations of the Cassini spacecraft’s interaction with plasmas representative of Saturn's ionosphere during the Grand Finale.

    The global simulations revealed complex interaction features such as a highly structured wake containing spacecraft-scale vortices and electron wings, a Langmuir wave analogue of Alfvén wings, which propagated at small angles to the magnetic field and upstream into the pristine plasma ahead of Cassini. The results explain how a large negatively charged plasma component combined with a large negative to positive ion mass ratio is able to drive the spacecraft to the observed positive potentials, a previously unexplained phenomenon observed during end-of-mission.  Despite the high electron depletions, the electron properties are found as a significant controlling factor for the spacecraft potential together with the magnetic field orientation which induces a potential gradient directed across Cassini's asymmetric body. This study reveals the global spacecraft interaction experienced by Cassini during the Grand Finale in a plasma environment dominated by a class of physics quite different to those considered in the classical view of spacecraft charging.

    Figure shows a schematic of the Cassini spacecraft configuration in the simulation. Bottom panels show the electron, ion, and negative ion density spatial distributions.

    Figure 1. The upper schematic shows the simulation configuration for Cassini during Grand Finale Rev 292 ingress at 2500 km Saturn altitude. The lower panels shows the electron (left-hand panel), ion (centre panel) and negative ion (right-hand panel) densities in the Y-Z plane through Cassini’s main body. The plasma wake is longer for the larger species and electron wing structures are visible in the electron density which propagate at small angles to the ambient magnetic field.

    Please see the paper for full details:

    Zhang, Z., Desai, R.T., Miyake, Y., Usui, H., Shebanits, O., (2021). Particle-In-Cell Simulations of the Cassini Spacecraft’s Interaction with Saturn’s Ionosphere during the Grand Finale. Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1, pp 964 - 973, https://doi.org/10.1093/mnras/stab750.

    Magnetic topology of actively evolving and passively convecting structures in the turbulent solar wind

    By Bogdan Hnat (University of Warwick)

    Plasma turbulence and magnetic reconnection are fundamental to the transfer of energy and momentum between field and flow and are ubiquitous in laboratory and in space plasmas. Both processes generate coherent structures, which modify the energy transfer between different scales. The precise energy balance depends on the relative prevalence of specific topological structures, their rate of evolution and their ability to carry currents. 

    Multi-point satellite observations of the high Mach number solar wind offer a unique opportunity to directly probe the properties of the coherent structures inherent in plasma turbulence and reconnection. We use topological invariants, nQ and nR, of the magnetic field gradient tensor to classify the topology of magnetic structures and to quantify the prevalence of actively evolving and passively advective structures and their contribution to Ohmic heating. We established that at least 25% of all samples are passively advected by the solar wind. The passive structures are dominated by plasmoids which carry a significant current density. Actively evolving structures are primarily quasi-2D flux ropes and 3D X-points. Magnetic configurations that actively evolve and carry a significant current, give a lower bound on the fraction of structures that can dissipate and heat the plasma to be ~35% of the total population. These are dominated by quasi-2D flux rope topology. Magnetic X-points constitute ~40% of all evolving structures, but only 1/5 of these carry a significant current.

     Probability density distributions are shown for passive structures on the left and active structures on the right. Shaded regions correspond to the topology of the structure.

    Figure 1. Conditional joint probability density for (a) force-free magnetic field, passively advecting configurations; (b) actively evolving magnetic structures. Rectangular blue shaded region with nQ>0 corresponds to quasi-2D flux ropes (O-points). Green shaded region, nQ<0 corresponds to hyperbolic 3D X-point magnetic topologies and unshaded regions represent plasmoids. Magenta line separates regions of hyperbolic and elliptic magnetic field lines.

    Please see the paper for full details:

    Hnat, B., Chapman, S. C., & Watkins, N. W. (2021). Magnetic Topology of Actively Evolving and Passively Convecting Structures in the Turbulent Solar Wind, Phys. Rev. Lett. 126, 125101. https://doi.org/10.1103/PhysRevLett.126.125101  

    Electron Bulk Heating At Saturn’s Magnetopause

    By Matthew Cheng (University College London)

    The magnetopause (MP) boundary is formed by the solar wind plasma flow interacting with a planetary magnetic field. Magnetic reconnection is an important process at this boundary as it energises plasma via release of magnetic energy. This process can lead to an “open” magnetosphere allowing solar wind and magnetosheath particles to directly enter the magnetosphere. At Saturn, the nature of MP reconnection remains unclear. Masters et al. (2012) hypothesised that viable reconnection under a large difference in plasma β across the MP also requires a high magnetic shear (i.e. magnetic fields either side of the boundary close to anti-parallel).

    We used electron bulk heating (i.e. the scalar temperature change) at magnetopause crossings to test hypotheses about reconnection at open magnetopause locations, and the influence of magnetic shear and plasma β. The bulk temperature was determined using three different methods, related to properties of the observed energy distribution (including methods from Lewis et al. 2008). We compared the observed heating of magnetosheath electrons with the prediction based on reconnection, using the semi-empirical relationship proposed by Phan et al. (2013) which relates the degree of bulk electron heating to the inflow Alfven speed. Figure 1 shows that Δβ-magnetic shear parameter space discriminates well between events with evidence of energisation (right) and those without (left). Based on the magnetic shear measured locally by the spacecraft either side of the MP, we find 81% of events with no energisation were situated in the ‘reconnection suppressed’ regime, and up to 68% of events with energization lay in the ‘reconnection possible’ regime. These findings support the hypotheses that magnetic shear and plasma β play a role in the viability of magnetic reconnection.

    Plots showing magnetic shear as a function of delta-beta, showing where events lie in this parameter space. Regions where reconnection is possible and reconnection is suppressed are marked. Two cases are shown: with and without energisation. The plots show the points lying in the suppressed reconnection when there is not energisation. More points lie in the possible reconnection region when there is energisation.

    Figure 1. Assessment of diamagnetic suppression of reconnection, overlaid with electron heating ΔTe. The left and right panels show events without and with evidence of energization respectively.

    Please see the paper for full details:

    Cheng, I., Achilleos, N., Masters, A., Lewis, G., Kane, M., & Guio, P. (2021). Electron Bulk Heating at Saturn’s Magnetopause. Journal of Geophysical Research: Space Physics, 126, e2020JA028800. https://doi.org/10.1029/2020JA028800