MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Call for applications for STFC Public Engagement Early-Career Researcher Forum

 

The STFC Public Engagement Early-Career Researcher Forum (the ‘PEER Forum’) will support talented scientists and engineers in the early stages of their career to develop their public engagement and outreach goals, to ensure the next generation of STFC scientists and engineers continue to deliver the highest quality of purposeful, audience-driven public engagement.

Applications are being taken until 4pm on 3 June 2021. If you would like to apply, visit the PEER Forum website, and if you have queries This email address is being protected from spambots. You need JavaScript enabled to view it..

The PEER Forum aims:

  • To foster peer learning and support between early career scientists and engineers with similar passion for public engagement and outreach, thus developing a peer support network that goes beyond an individual’s term in the forum 
  • To foster a better knowledge and understanding of the support mechanisms available from STFC and other organisations, including funding mechanisms, evaluation, and reporting. As well as how to successfully access and utilise this support 
  • To explore the realities of delivering and leading public engagement as an early career professional and build an evidence base to inform and influence STFC and by extension UKRI’s approaches to public engagement, giving an effective voice to early career researchers

What will participation in the Forum involve?

Participants in the PEER Forum will meet face-to-face at least twice per year to share learning and to participate in session that will strengthen the depth and breadth of their understanding of public engagement and outreach.

Who can apply to join the Forum?

The PEER Forum is for practising early-career scientists and engineers who have passion and ambition for carrying out excellent public engagement alongside, and complementary to, their career in science or engineering. We are seeking Forum members from across the breadth of STFC’s pure and applied science and technology remit.

The specific personal requirements of PEER Forum membership are that members:

  • Have completed (or currently studying for – including apprentices and PhD students) their highest level of academic qualification within the last ten years (not including any career breaks)
  • Are employed at a Higher Education Institute, or a research-intensive Public Sector Research Organisation or Research Laboratory (including STFC’s own national laboratories)
  • Work within a science and technology field in STFC’s remit, or with a strong inter-disciplinary connection to STFC’s remit, or use an STFC facility to enable their own research
  • Clearly describe their track record of experience in their field, corresponding to the length of their career to date
  • Clearly describe their track record of delivering and leading, or seeking the opportunity to lead, public engagement and/or outreach
  • Can provide insight into their experiences in public engagement and/or outreach and also evidence one or more of
  • Inspiring others
  • Delivering impact
  • Demonstrating creativity
  • Introducing transformative ideas and/or inventions
  • Building and sustaining collaborations/networks
  • Are keen communicators with a willingness to contribute to the success of a UK-wide network
  • https://stfc.ukri.org/public-engagement/training-and-support/peer-forum/  

    Astronet Science Vision & Infrastructure Roadmap

     

    Astronet is a consortium of European funding agencies, established for the purpose of providing advice on long-term planning and development of European Astronomy. Setup in 2005, its members include most of the major European astronomy nations, with associated links to the European Space Agency, the European Southern Observatory, SKA, and the European Astronomical Society, among others. The purpose of the Science Vision and Infrastructure Roadmap is to deliver a coordinated vision covering the entire breadth of astronomical research, from the origin and early development of the Universe to our own solar system.

    The first European Science Vision and Infrastructure Roadmap for Astronomy was created by Astronet, using EU funds, in 2008/09, and updated in 2014/15. Astronet is now developing a new Science Vision & Infrastructure Roadmap, in a single document with an outlook for the next 20 years. A delivery date to European funding agencies of mid-2021 is anticipated. 

    The Science Vision and Infrastructure Roadmap revolves around the research themes listed below:

    • Origin and evolution of the Universe
    • Formation and evolution of galaxies
    • Formation & evolution of stars
    • Formation & evolution of planetary systems
    • Understanding the solar system and conditions for life

    but will include cross-cutting aspects such as computing and training and sustainability.

     

    After some delays due to the global pandemic, the first drafts of the chapters for the document are now available from the Panels asked to draft them, for you to view and comment on. For the Science Vision & Roadmap to be truly representative it is essential we take account of the views of as much of the European astronomy and space science community as possible – so your input is really valued by the Panels and Astronet. Please leave any comments, feedback or questions on the site by 1 May 2021.

    It is intended that a virtual “town hall” style event will be held in late Spring 2021, where an update on the project and responses to the feedback will be provided.

    Equitable Letters in Space Physics (ELSP)

    Equitable Letters for Space Physics (ELSP) is a project to encourage merit-based recommendations and nominations in the space physics community by providing resources for letter writing and reviews of recommendation and nomination letters. You can learn more about ELSP's mission and find both letter writing and implicit bias resources at the ELSP website.

    ELSP seeks to achieve this goal by:

    1. Providing resources for people writing letters of recommendation and award nomination at the undergraduate level and above.
    2. Providing resources for people wishing to learn about different implicit biases and lessen their manifestation.
    3. Providing reviews of recommendation and nomination letters, with the goal of lessening implicit bias in these letters.

    At the moment, ELSP is seeking volunteers to participate as reviewers in the letter submission system. This system will function similarly to double-blind journal article reviews, with the ELSP executive director acting as editor.The ELSP board of directors is Angeline G. Burrell; John Coxon; Alexa Halford; McArthur Jones Jr.; and Kate Zawdie. If you have more questions or would like to participate, This email address is being protected from spambots. You need JavaScript enabled to view it..

    Call for proposals for ESA's Living Planet Fellowship

    ESA is currently inviting proposals for their Living Planet Fellowship with a deadline of 15 March 2021. These fellowships, worth a maximum of €110k, are intended:

    To support young scientists, at post-doctoral level, to undertake cutting-edge research in Earth Observation, Earth System Science or Climate Research, maximising the scientific return of ESA and European EO missions and datasets through the development of novel EO methods, techniques and products, and by delivering excellent scientific results addressing the grand Earth Science challenges of the next decade, enabling improved predictions of the physical interaction of society with the Earth system.

    Interested candidates need to propose a two-year-long research plan which contributes to either of the two themes of the fellowship: "Advancing novel methods and techniques" or "Advancing Earth system science". The call also includes opportunities in the use of cloud computing capabilities; to support small ground-based experiments and in situ data collection; and a visiting scientist scheme to join the new ESA Earth System Science Hub.

    Questions related to the call can be submitted via email, and must be "not later than two weeks before the Closing Date" (i.e. by the end of February 2021). The timeline for the fellowships is as follows:

    Milestone Date
    Submission of proposals 15 March 2021 
    Communication of results* Q2 2021
    Beginning of activities* Q3 2021

    *tentative

    "Mental Health and Wellbeing in the MIST Community": A series of panel discussions

    We are hosting a series of pre-recorded panel discussions on the topic of "Mental Health and Wellbeing in the MIST Community", exploring the sources and impacts within our community as well as discussing ways to move forwards. The discussions will focus on both individual and community-wide perspectives, and will consider perspectives from a range of career stages. The panel discussions will separately focus on views from a) PhD students, b) PDRAs, and c) Tenure positions. 
     
    To ensure that the discussion focuses on the needs and issues most important to the MIST Community, we request your input on questions that you would like to pose to the panel, as well as specific topics that you would like to see covered. To suggest questions & topics, please use the following form: https://forms.gle/J4QS5JdaVCo1hF6z7 and submit your suggestions by Friday 26 February. Please note that any responses on the form are completely anonymous.
     
    For support with mental health and wellbeing concerns, we recommend the following resources: https://ras.ac.uk/education-and-careers/places-you-can-find-support.
     
    If you have any other questions, concerns, or would like to discuss anything in further detail, please get in touch at This email address is being protected from spambots. You need JavaScript enabled to view it..

    Nuggets of MIST science, summarising recent MIST papers in a bitesize format.

    If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!

    Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits

    By Omakshi Agiwal (Imperial College London)

    The Cassini spacecraft completed 20 high latitude orbits known as the ‘F-ring orbits’ during the end of mission (corresponding to northern Saturnian summer). Each orbit provided a ~2 day sample of the magnetotail region, where the measured radial magnetic field Br and the position of the magnetic equator/magnetotail current sheet centre (indicated by Br=0) showed significant orbit-to-orbit variability, despite a highly repeatable spacecraft trajectory.

    Our work considers two well-known sources of temporal variability in the Saturnian magnetosphere:

    1. Solar wind forcing, which acts to displace the magnetic equator from the rotational equator. The forcing increases with radial distance from the planet and is variable with solar wind conditions on ~ week-long timescales.
    2. Planetary period oscillations (PPO), which refer to two magnetic perturbation systems (one in each hemisphere) that rotate independently around Saturn’s spin/dipole axis with periods of ~10.7 hours. They modulate the vertical position and thickness of the magnetotail current sheet depending on their relative strength and phase.

    A movie showing a spacecraft trajectory through the modelled current sheet. The results show a good correspondence between magnetometer observations and modelled values as well as illustrating the temporal evolution.Figure 1: (a) Illustrates the spacecraft (blue dot) traversing our temporally variable modelled current sheet, shown by the shaded grey region. The position of the magnetic equator is shown by the dashed black line. The two arrows on the polar-plot show an equatorial projection of the northern (blue) and southern (red) PPO fields rotating with a ~ fixed relative phase (ΔΦ), with the spacecraft on the nightside. (b) Shows the time-series of Br measured by the magnetometer (solid grey line) and the modelled (dashed orange line) from our work. (c) Illustrates the temporal evolution of the z-position of the magnetic equator and the thickness of the current sheet from the model.

    We combine models that consider the effects of each perturbation source on Br, and the model output for the magnetotail pass of an example orbit is shown in Figure 1. Overall, we show that the temporal variability in 90% of the F-ring orbits is consistent with the expected variability due to solar wind forcing and dual-PPO modulation. This demonstrates an understanding of the key sources of large scale variability in Saturn’s magnetotail, and shows that magnetotail dynamics can reliably be studied using high latitude orbits (which is novel in our method).

    For more information, please see the paper:

    Agiwal, O., Hunt, G. J., Dougherty, M. K., Cowley, S. W. H., & Provan, G. ( 2019). Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027371 

    Active Region Modulation of Coronal Hole Solar Wind

    By Allan Macneil (University of Reading)

    The solar wind is the continuous outflow of plasma from the Sun’s atmosphere (the corona) into interplanetary space along ‘open’ magnetic field. The mechanisms which produce the solar wind; opening the coronal magnetic field, accelerating the plasma, and imbuing it with a range of compositional and dynamical properties, are not fully understood. 'Coronal holes’, which are regions of open magnetic field, are known to be the source of the ‘fast’ (v > 500 km/s) solar wind. However, the origins of ‘slow’ (v < 400 km/s) solar wind are unclear, particularly as slow wind properties imply origins in closed magnetic field regions. We present a case study into one candidate slow wind source: active regions.

    Solar images of the coronal hole alongside time series of solar wind properties.

    Figure 1: Top row shows EUV solar images of the source coronal hole (CH), and the CH plus active region (AR) during the first and second rotations. The CH and AR are outlined in blue and red, and green crosses show the location of mapped solar wind source locations. The lower panels show in situ and mapping time series are shown for each associated solar wind period.

    Active regions are locations of concentrated magnetic flux. They are associated with bright loops in the corona, and are a possible slow solar wind source. In April 2016, an active region emerged at the eastern boundary of a coronal hole which had produced Earth-directed solar wind one solar rotation prior (see Figure 1). This unique observational configuration is shown in Figure 1. We study what changes the newly-emerged active region causes in the solar wind, by contrasting linked in situ solar wind and remote sensing coronal observations between the two periods. Primarily, we find that the active region causes increased variability in composition and structuring of the solar wind located at the edge of the coronal hole stream. We conclude that this new variability is most likely due to interaction between the active region and the coronal hole in the form of loop-opening interchange reconnection. This process changes the open field topology around the coronal hole boundary, and may sporadically release plasma of a range of properties from previously closed magnetic fields into the solar wind.

     For more information, please see the paper:

    Macneil, A. R., Owen, C. J., Baker, D., et al. (2019). Active Region Modulation of Coronal Hole Solar Wind. The Astrophysical Journal, 887(2), 146, https://doi.org/10.3847/1538-4357/ab5586 

    Electron Diffusion by Wave-Particle Interactions in the Radiation Belt

    By Oliver Allanson (University of Reading)

    The Earth's outer radiation belt is a dynamic and extended radiation environment within the inner magnetosphere, composed of energetic plasma that is trapped by the geomagnetic field. The size and location of the outer radiation belt varies dramatically in response to solar wind variability - orders of magnitude changes in the electron flux can occur on short timescales (~hours). However, it is very challenging to accurately predict, or model, fluxes within the radiation belt. This is a pressing concern given the hundreds of satellites that orbit within this hazardous environment, and so the prediction of its variability is a key goal of the magnetospheric space weather community (e.g. see Horne et al., 2013).

    Most physics-based computer models of particle dynamics in the radiation belts rely upon the assumption of slow perturbations to electron distributions due to interactions with low amplitude electromagnetic waves. However, satellite observations have shown that high amplitude waves and correspondingly large changes in electron distributions are not rare (e.g. see a recent example with observations from the ARASE satellite in Kurita et al., 2018). In our novel electromagnetic particle-in-cell numerical experiments, we analyse the diffusion in energy and pitch angle space of 100 million individual high-energy electrons in conditions typical of the radiation belt environment - due to interactions with externally driven electromagnetic waves. The method is illustrated in Figure 1. We present two main conclusions:

    (i) On very short timescales (~0.1 second) we observe an initial ‘anomalous’ electron response, for which the rate of diffusion is nonlinear in time.

    (ii) After the initial transient phase we observe a normal diffusive response that is consistent with quasilinear theory.

    A schematic showing the steps taken by the particle-in-cell numerical experiment.

    Figure 1: A schematic illustrating the particle-in-cell numerical experiment.

     The results demonstrate the exciting capabilities of our new experimental technique. Here we prove the concept for conditions that are unlikely to deviate from standard theory, and in future experiments this framework will allow us to investigate the changing nature of the electron response with increased electromagnetic wave amplitude.

    For more information, please see the paper:

    Allanson, O.,  Watt, C. E. J.,  Ratcliffe, H.,  Meredith, N. P.,  Allison, H. J.,  Bentley, S. N., et al. ( 2019).  Particle‐in‐cell experiments examine electron diffusion by whistler‐mode waves: 1. Benchmarking with a cold plasma. Journal of Geophysical Research: Space Physics,  124. https://doi.org/10.1029/2019JA027088 

    On the Calculation of the Effective Polytropic Index in Space Plasmas

    by Georgios Nicolaou (MSSL, UCL)

    The effective polytropic index of space plasmas γ is crucial for understanding the dynamics of the plasma particles. For instance, numerous theoretical descriptions and simulations of plasmas, demand the knowledge of the effective polytropic index for accurate calculations.  

    Several studies, determined γ within different plasma regions, using single spacecraft observations of the plasma density and temperature T. The effective polytropic index γ is typically determined from a linear chi-squared minimization fitting of lnT as a function of lnn.

    In this paper, we investigate the accuracy of γ calculations based on the standard fitting analysis, considering plasma n and T measurements with a certain level of uncertainty σn and σT respectively (see Figure 1). We model typical plasmas, and we show that uncertainty in the plasma density measurements introduces a systematic error in the calculation of γ, and potentially leads to artificial isothermal indices (Figure 1, left). On the other hand, uncertainty in the plasma temperature measurements introduces a statistical error in the calculation of γ (Figure 1, right). We analyze Wind spacecraft observations of solar wind protons in order to investigate the propagated uncertainties in real plasma applications, confirming our model predictions (Figure 1).

    These results highlight how uncertainties in plasma measurements can lead to erroneous values of the poytropic index. In this study we present a new data-analysis approach for reducing the number of erroneous data-points from future analyses.

    Plots showing how the polytropic index varies with uncertainty in density and uncertainty in temperature.

    Figure 1. Normalized histograms of (left) γ as a function of σn/n, for σT/T < 15% and (right) γ as a function of σT/T, for σn/n < 1%. The white line is the mean value of the histogram in each column. We display only the range of uncertainties for which we have more than 100 data points. On each panel, we show the predictions of our model (red) for plasma parameters corresponding to the mode values of each parameter for the analyzed intervals.

    For more information, please see the paper:

    Nicolaou, G., G. Livadiotis, R. T. Wicks (2019). On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy, 21, 997. https://doi.org/10.3390/e21100997.

    Long-term Correlations of Polytropic Indices with Kappa Distributions in Solar Wind Plasma near 1 AU

    by Georgios Nicolaou (MSSL, UCL)

    The polytropic process determines a relationship between the plasma density and temperature, during the transition of the plasma from one equilibrium state to another under constant specific heat. This process is described by the effective polytropic index, which can be determined by the analysis of plasma density and temperature measurements, and is a crucial parameter in determining the dynamics of the plasma.

    Over the last few decades numerous studies have shown that the velocities of the plasma particles often follow kappa distribution functions. The kappa index that labels and governs these distributions also becomes a key parameter to understand the plasma dynamics.

    Interestingly, recent studies have shown that the polytropic indices and kappa indices of space plasmas are related, in the presence of potential energy. Moreover, the relationship between the two indices defines the potential degrees of freedom.

    This is the first statistical study to analyze Wind spacecraft observations to derive the polytropic index and the kappa index of solar wind protons and investigate their relationship, over the last two solar cycles. We show that, most of the time, the two indices are related, exactly as predicted by the theory. When able, we quantify the relation in order to derive the potential degrees of freedom. Among others, we show that an enhanced solar activity and/or interplanetary magnetic field, reduces the potential degrees of freedom, and decrease the dimensionality of a typical electric field potential from dr = 3 in solar minimum, to dr = 2 in solar maximum (Figure 1).

    Overall, these results identify fundamental properties of the solar wind plasma, that demonstrate clear dependences on solar cycle.

    Dimensionality plotted as a function of sunspot number.

    Figure 1. Dimensionality dr for a typical interplanetary potential as a function of sunspot number Sn. The linear fit to data points (black dash) is also shown. The results indicate that the potential dimensionality dr reduces with increasing Sn.

    For more information, please see the paper:

    Nicolaou G. and G. Livadiotis (2019). Long-term correlations of polytropic indices with Kappa distributions in solar wind plasma near 1 AU. The Astrophysical Journal, 884:52, https://iopscience.iop.org/article/10.3847/1538-4357/ab31ad/meta